Our Additives
About EOLCS
About Lubricants
API Classifications
Technical Tables

Our Additives

Additive Type

Purpose

Pour Point Depressant

Enable lubricant to flow at low temperatures

Viscosity Modifier

Reduce the rate of viscosity change with temperature

Antifoamant

Prevent lubricant from foaming a persistent foam

Antioxidant

Retard oxidative decomposition

Antiwear and EP agent

Reduce friction & wear and prevent scoring & seizure

Corrision and Rust Inhibitor

Prevent corrosion and rusting of metal parts in contact with the lubricant

Detergent

Keep surfaces free of deposits

Dispersant

Keep insoluble contaminants dispersed in the lubricant

Friction Modifier

Alter coefficient of friction

About EOLCS

Engine Oil Licensing and Certification System (EOLCS)

API's Engine Oil Licensing and Certification System (EOLCS) is a voluntary licensing and certification program that authorizes engine oil marketers who meet specified requirements to use the API Engine Oil Quality Marks—the API Service Symbol "Donut" and Certification Mark "Starburst." This program is a cooperative effort between the oil industry and vehicle and engine manufacturers Ford, General Motors, and Chrysler; the Japan Automobile Manufacturers Association; and the Engine Manufacturers Association. Performance requirements, test methods, and limits are cooperatively established by vehicle and engine manufacturers, technical societies like the Society of Automotive Engineers (SAE) and the American Society for Testing and Materials (ASTM) and industry associations like the American Chemistry Council and API. Oils meeting these requirements are recommended by vehicle manufacturers.

The API Service Symbol

The API Service Symbol "Donut" is divided into three parts:
1
The top half describes the oil's performance level
2
The center identifies the oil's viscosity
3
The bottom half tells whether the oil has demonstrated energy-conserving properties in a standard test in comparison to a reference oil

Performance Level

The top of the Donut shows the oil's performance level for gasoline and/or diesel engines.
The letter "S" followed by another letter (for example, SM) refers to oil suitable for gasoline engines.
The letter "C" followed by another letter and/or number (for example, CI-4) refers to oil suitable for diesel engines.
These letters officially stand for "Service" and "Commercial". The current API performance categories that can appear in the top part of the Donut are listed in the API Motor Oil Guide.

SAF Viscosity Grade

The center of the Donut shows the oil's SAE Viscosity Grade. Viscosity is a measure of an Oil's flow characteristics, or thickness, at certain temperatures.
The low-temperature viscosity (the first number, 5W in a 5W-30 oil)
indicates how quickly an engine will crank in winter and how well the oil will flow to lubricate critical engine parts at low temperatures. The lower the number the more easily the engine will start in cold weather.
The high-temperature viscosity (the second number, 30 in a 5W-30 oil)
Provides thickness, or body, for good lubrication at operating temperatures.
A multigrade oil (for example, SAE 5W-30)
Provides good flow capability for cold weather but still retains thickness for high-temperature lubrication.
A single grade oil (a single number in the center of the donut)
Recommended for use under a much narrower set of temperature conditions than multigrade oils.
Operators should refer to their owner's manuals to select the proper viscosity oil for the ambient temperature and operating conditions at which the equipment will be used.

Energy Conserving and CI-4 PLUS Designations

The bottom of the donut tells whether the oil has energy conserving properties when compared with a reference oil in an engine test or if an oil meets CI-4 PLUS requirements.
Oils labeled as "Energy Conserving" have passed the test that measures an oil's ability to conserve energy. Widespread use of engine oils with this designation should result in an overall saving of fuel in the vehicle fleet as a whole, but a particular vehicle operator may not experience a fuel savings as a result of using these oils.

About Lubricants

General Properties of our lubricating Oil

Viscosity

  • This indicates the resistance of a liquid to flow.
  • There are several units for measuring viscosity. Formerly, the unit commonly used in America was Saybolt Universal Second (SSU), measured at 100°F or 210°F. In Europe, the former widely used unit was Redwood I second (RWI), measured at 100°F or 210°F. At present, most countries have switched over to the metric system that employs the unit Centistokes (cSt), measured at 40°C or 100°C.
  • Oil with higher viscosity can stand greater pressure without being squeezed out of the lubricating surfaces. However, the high internal friction of the oil may offer greater resistance to the movement of the lubricating parts. An oil of lower viscosity offers less resistance to the moving parts but the oil can be easily squeezed out of the lubricating surfaces. It is therefore important to select a lubricating oil of appropriate viscosity to achieve optimum lubrication effect.
  • Viscosity changes with temperature. Hence, the measuring temperature must be specified whenever the viscosity of a liquid is stated. When temperature rises, a liquid becomes less viscous. Similarly, a liquid becomes thicker when temperature drops.
  • Viscosity Index (VI) is an indication of how the viscosity of a liquid varies with temperature. A high VI means the liquid does not thin out so much when temperature rises. VI improver additives that are usually high molecular weight polymers can increase the VI of lubricating oil.
  • Increase in oil viscosity achieved by addition of polymers can be partially lost again through degradation of the polymer molecules by shear stress such as heavily loaded gears. Oil that can resist viscosity change due to shear are said to have high shear stability.

Pour Point

  • Indicates flow characteristic at low temperature.
  • Depends on the wax content of the oil.

Flash Point

  • Measures the readiness of the oil to ignite momentarily in air and is a consideration regarding the fire hazard of the oil.

Oxidation Stability

  • Oxidation of oil will produce resins and sludge that may plug filters and oil passages.
  • Oxidation can also produce soluble organic acids that may cause corrosion of machine parts.
  • A good lubricating oil should resist oxidation.

ACIDITY AND ALKALINITY

(Total Acid Number and Total Base Number)
  • High acidic oil may cause corrosion of machine parts.
  • Most engine oils show some alkalinity due to the addition of detergent type additives and this helps to neutralize any acid formed in the oil by oxidation.
  • After prolong usage, lubricating oil may contain organic acids formed by oxidation. Therefore, a measurement of the acidity of an oil can reflects its degree of oxidation.

Detergency

  • Most engine oils contain detergent and dispersant additives to prevent dirty particular produced by incomplete combustion from accumulating and plating metal surface.

Anti Rust Property

  • Water may seep into the lubricating system and cause rusting of machine parts.
  • Rust particles can act as catalyst to accelerate the oxidation of the oil.
  • Anti-rust additives can be absorbed onto metal surface and prevent moisture from coming into contact with the metal, thus preventing rusting.

CORROSION INHIBITION

  • Acidic materials in oil can cause corrosion of machine parts.
  • Corrosion can be minimized by the additives of corrosion inhibitor that reacts with metal to form a protective layer separating the acidic materials and the metal.

Anti-Foaming Property

  • Foaming reduces the lubricity of oil because the air bubbles in the foam will create a barrier between the oil and the metal surface.
  • Foam can also produce resistance to the movement of machine parts.
  • In a hydraulic system, foam will reduce the cohesive power of the oil and cause the hydraulic pressure to drop.
  • Good lubricating oil will not foam easily and can disperse foam quickly. Anti-foam additives can help to reduce the foaming tendency of oil.

Emulsification and Demulsification

  • Emulsification is the homogenous mixing of oil and water.
  • Some oil requires high emulsibility so that it can mix with water easily, for example, some metal cutting oils.
  • The emulsibility of oil can be improved by the addition of emulsifying agent that has strong affinity for both oil and water, thus holding the oil and water molecules together.
  • Some other lubricants require good demulsibility so that water can be separated from the oil easily, e.g. Turbine oil. The demulsibility of oil can be achieved by good refining technique.

Anti Wear Property

  • Some lubricating conditions may call for extremely light oil, an oil of lower viscosity than the load-speed relationship of the machine may indicate. Under such condition, wear of the metal surfaces may occur. Anti-wear additive forms a protective coating on the metal surfaces, allowing the surfaces to slide on each other with a minimum loss of metal.

Extreme Pressure Loading Property (EP)

  • Heavy loading, extreme pressure and intense heat may cause machine moving parts to melt and weld together, hence interfering motion.
  • The extreme-pressure additive in oil can react with the metal to form a compound with low melting point. The intense heat developed due to the extreme-pressure loading will be dissipated in the melting of the compound instead of welding the two metallic parts.
  • EP properties are usually measured by Timken method (ASTM D 2782) or FZG Gear Machine (IP 334). In the Timken method, a steel cup rotates against a steel block in a lubricant bath. The maximum load that will not cause scoring is the OK load. In the FZG Gear Machine, special gear wheels are run in the lubricants under test. The loading is increasing by stages and the stages at which gear damages occur is reported as the FZG loading stage of the lubricant.

Tackiness

  • Tacky oil contain tackiness agent and will stick to the lubricating surface for a long time without being spattered. Lubricants used in textile machinery and wire ropes usually require tackiness property.

General Properties of Grease

Grease is a semi-solid formed by the dispersion of a thickening agent in a liquid lubricants (base oil). Other ingredients imparting special properties may be included. Greases have advantage over oil in some applications because greases stay at the point of lubrication and will hardly be squeezed out. Sometimes, greases can also be used to seal up machine parts to prevent the entry of moisture and dust.

Base oil viscosity, hydrocarbon type, and volatility can influence the structure stability, lubricating quality, low and high temperature performance, and cost of grease. The thickener is the principal factor controlling water resistance, high temperature qualities, resistance to breakdown through continued use, and ability to stay in place. To a large extend, grease cost is determined by the type of thickener and other additives.

Thickener can be divided into several categories; soap-type, inorganic type and synthetic organic type.

The important characteristics of grease are as follows: -

Penetration

  • This indicates the consistency (hardness or softness) of grease. It is measured by dropping a pointed cone into the grease and sees how far the cone penetrates into the sample. Different ranges of penetration are identified by the following National Lubricating Grease Institute (NLGI) Grade Numbers: 000, 00, 0, 1, 2, 3, 4, 5, and 6. Grade 000 is the softest while Grade 6 is the hardest.
  • Most grease thickened with soaps become softer with increase in temperature, but some greases become progressively harder upon exposure to high temperature. Non-soap thickeners, as a whole, show very little change in consistency with temperature rise.

Water Resistance

  • Greases with thickeners soluble in water will emulsify and fluidize if come into contact with relatively large amount of water. In general, calcium, lithium and aluminium soaps are highly water resistance while sodium soap greases are soluble in water.

Oxidation Stability

  • Oxidation will cause the grease to harden, form varnish like films and eventually carbonize. Additives can improve the oxidation stability of grease.

Lubricating Properties

  • Both the oil and the thickener in soap type grease have lubricating properties. Inorganic non-soap thickener generally does not contribute to the lubricating of grease. The lubricating capability of the oil depends on its viscosity and viscosity index.

Anti-Wear Characteristic

  • Additives may be included in a grease to promote its anti-wear properties.

Extreme Pressure Capability
(EP)

  • Some grease contains special additives to fortify its load carrying capability so that welding and scoring of metal can be minimized.

Dropping Point

  • It is the temperature at which the grease is fluid enough to drip. Grease with a dropping point below the operating temperature would not provide proper lubricant. However, the converse is not necessarily true; a dropping point above operating temperature is no guarantee of adequate lubrication since there may be change in consistency and deterioration in chemical properties of the grease at high temperatures.

API Classifications

Engine Oil Licensing and Certification System (EOLCS)

API Engine Service Classifications

The American Petroleum Institute (API) engine oil classification system was set up as a joint effort by API, ASTM (American Society for Testing and Materials) and SAE (Society of Automotive Engineers). The letter classification system is a method of classifying engine oils according to their performance characteristics, and relating this to their intended type of service

API Service Classifications

S
Series
Service Stations / Spark Ignition Engines
C
Series
Commercial Application / Compression Ignition Engines
It is an “open-ended” system which allows for the addition of new designations with little change to existing ones.

S Series

Obsolete
Obsolete
Current

SA

Obsolete
Formerly for Utility Gasoline and Diesel Engine Service
Category SA denotes service typical of older engines operated under such mild conditions that the protection afforded by compounded oils is not required. This category has no performance requirements, and oils in this category should not be used in any engine unless specifically recommended by the equipment manufacturer.

SB

Obsolete
Formely for Utility Gasoline and Diesel Engine Service
Category SB denotes service typical of older engines operated under such mild conditions that only minimum protection afforded by compounding is desired. Oils designed for this service have been used since 1930s and provide mild antiscuff capability and resistance to oil oxidation and bearing corrosion. They should not be used in any engine unless specifically recommended by the equipment manufacturer.

SC

Obsolete
Formerly for Utility Gasoline and Diesel Engine Service
Category SC denotes service typical of gasoline engines in 1964 through 1967 models of passenger cars and some trucks, operating under engine manufacturers warranties in effect during those model years. Oils designed for this service provide control of high and low temperature deposits, wear, rust, and corrosion in gasoline engines.

SD

Obsolete
1968 Gasoline Engine Service
Category SD denotes service typical of gasoline engines in 1968 through 1970 models of passenger cars and some trucks, operating under engine manufacturers warranties in effect during those model years. This category may also apply to certain 1971 or later models as specified (or recommended) in the owners manuals. Oils designed for this service provide more protection against high and low temperature deposits, wear, rust, and corrosion in gasoline engines than oils that are satisfactory for API Engine Service Category SC and may be used when API Engine Service Category SC is recommended.

SE

Obsolete
1972 Gasoline Engine Service
Category SE denotes service typical of gasoline engines in passenger cars and some trucks beginning with 1972 and certain 1971 through 1979 models operating under engine manufacturer's warranties. Oils designed for this service provide more protection against oil oxidation, high temperature deposits, rust, and corrosion in gasoline engines than oils that are satisfactory for API Engine Service Category SD or SC and may be used when either of these categories is recommended.

SF

Obsolete
1980 Gasoline Engine Service
Category SF denotes service typical of gasoline engines in passenger cars and some trucks beginning with 1980 through 1989 models operating under engine manufacturers recommended maintenance procedures. Oils developed for this service provide increased oxidation stability and improved anti-wear performance relative to oils that meet the minimum requirements of API Service Category SE. These oils also provide protection against engine deposits, rust, and corrosion. Oils meeting API Service Category SF may be used when API Engine Service Category SE, SD or SC are recommended.

SG

Obsolete
1989 Gasoline Engine Service
Category SG denotes service typical of gasoline engines in passenger cars, vans, and light trucks operating under manufacturers’ recommended maintenance procedures. Category SG oils include the performance properties of API Service Category CC. (Certain manufacturers of gasoline engines require oils that also meet the higher diesel engine Category CD.) Oils developed for this service provide improved control of engine deposits, oil oxidation, and engine wear relative to oils developed for previous categories. These oils also provide protection against rust and corrosion. Oils meeting API Service Category SG may be used when API Engine Service Category SF, SE, SF/CC or SE/CC are recommended.

SH

Obsolete
1994 Gasoline Engine Service
Category SH was adopted in 1992 to describe engine oil first mandated in 1993. It is for use in service typical of gasoline engines in present and earlier passenger cars, vans, and light trucks operating under manufacturers’ recommended maintenance procedures. Engine Oils developed for this category provide performance exceeding the minimum requirements for API Service Category SG, which it is intended to replace, in the areas of deposit control, oil oxidation, wear, rust, and corrosion. Oils meeting API SH requirements have been tested according to the American Chemistry Council (ACC) Product Approval Code of Practice and may utilize the API Base Oil Interchange and Viscosity Grade Engine Testing Guidelines. They may be used where API Service Category SG and earlier categories are recommended. Effective August 1, 1997, API SH cannot be used except with API CF, CF-2, CF-4 or CG-4 when displayed in the API service symbol, and the C category must appear first.

SJ

Current
1997 Gasoline Engine Service
Category SJ was adopted in 1996 to describe engine oil first mandated in 1997. It is for use in service typical of gasoline engines in present and earlier passenger cars, vans, and light trucks operating under manufacturers recommended maintenance procedures. Oils meeting API SH requirements have been tested according to the American Chemistry Council (ACC) Product Approval Code of Practice and may utilize the API Base Oil Interchange and Viscosity Grade Engine Testing Guidelines. They may be used where API Service Category SH and earlier categories are recommended.

SL

Current
2001 Gasoline Engine Service
Category SL was adopted to describe engine oils for use in 2001. It is for use in service typical of gasoline engines in present and earlier passenger cars, sports utility vehicles, vans and light trucks operating under vehicle manufacturers recommended maintenance procedures. Oils meeting API SL requirements have been tested according to the American Chemistry Council (ACC) Product Approval Code of Practice and may utilize the API Base Oil Interchange and Viscosity Grade Engine Testing Guidelines. They may be used where API Service Category SJ and earlier categories are recommended.

SM

Current
Introduced on 30 November 2004
Category SM oils are designed to provide improved oxidation resistance, improved deposite protection, better wear protection, and better low-temperature performance over the life of the oil. Some SM oils may also meet the latest ILSAC specification and/or qualify as Energy Conserving. They may be used where API Service Category SJ and SL earlier categories are recommended.

SN

Current
Introduced in October 2010
Designed to provide improved high temperature deposit protection for pistons, more stringent sludge control, and seal compatibility. API SN with Resource Conserving matches ILSAC GF-5 by combining API SN performance with improved fuel economy, turbocharger protection, emission control system compatibility, and protection of engines operating on ethanol-containing fuels up to E85.

SP

Current
Introduced in May 2020
Designed to provide protection against low-speed pre-ignition (LSPI), timing chain wear protection, improved high temperature deposit protection for pistons and turbochargers, and more stringent sludge and varnish control. API SP with Resource Conserving matches ILSAC GF-6A by combining API SP performance with improved fuel economy, emission control system protection and protection of engines operating on ethanol-containing fuels up to E85.

C Series

Obsolete
Obsolete
Current

CA

Obsolete
Diesel Engine Service
Service typical of diesel engines operated in mild to moderate duty with high quality fuels; occasionally has included gasoline engines in mild service. Oils designed for this service provide protection from bearing corrosion and ring-belt deposits in some naturally aspirated diesel engines when using fuels of such quality that they impose no unusual requirements for wear and deposits protection. They were widely used in the 1940s and 1950s but should not be used in any engine unless specifically recommended by the equipment manufacturer.

CB

Obsolete
Diesel Engine Service
Service typical of diesel engines operated in mild to moderate duty, but with lower quality fuels, which necessitate more protection from wear and deposits; occasionally has included gasoline engines in mild service. Oils designed for this service were introduced in 1949. They provide necessary protection from bearing corrosion and from high temperature deposits in naturally aspirated diesel engines with higher Sulfur fuels.

CC

Obsolete
Diesel Engine Service
Service typical of certain naturally aspirated, turbocharged or supercharged diesel engines operated in moderate to severe-duty service, and certain heavy-duty gasoline engines. Oils designed for this service provide protection from bearing corrosion, rust, corrosion and from high to low temperature deposits in gasoline engines. They were introduced in 1961.

CD

Obsolete
Diesel Engine Service
Service typical of certain naturally aspirated, turbocharged or supercharged diesel engines where highly effective control of wear and deposits is vital, or when using fuels with a wide quality range (including high-Sulfur fuels). Oils designed for this service were introduced in 1955 and provide protection from high temperature deposits and bearing corrosion in these diesel engines.

CD

Obsolete
Diesel Engine Service
Service typical of two-stroke cycle diesel engines requiring highly effective control of wear and deposits. Oils designed for this service also meet all performance requirements of API Service Category CD.

CE

Obsolete
Diesel Engine Service
Service typical of certain turbocharged or supercharged heavy-duty diesel engines, manufactured since 1983 and operated under both low speed, high load and high speed, high load conditions. Oils designed for this service may also be used when API Service Category CD is recommended.

CF-4

Obsolete
Diesel Engine Service
Service typical of high speed, four-stroke cycle diesel engines. API CF-4 oils exceed the requirements for the API CE category, providing improved control of oil consumption and piston deposits. These oils should be used in place of API CE oils. They are particularly suited for on-highway, heavy-duty truck applications. When combined with the appropriate S category, they can also be used in gasoline and diesel powered personal vehicles i.e., passenger cars, light trucks and vans when recommended by the vehicle or engine manufacturer.

CF

Obsolete
Indirect-Injected Diesel Engine Service
Service typical of indirect-injection diesel engines and other diesel engines that use a broad range of fuel types, including those using fuel with high Sulfur content; for example, over 0.5% wt. Effective control of piston deposits, wear and copper-containing bearing corrosion is essential for these engines, which may be naturally aspirated, turbocharged or supercharged. Oils designated for this service have been in existence since 1994 and may be used when API Service Category CD is recommended.

CF-2

Obsolete
Indirect-Injected Diesel Engine Service
Service typical of two-stroke cycle diesel engines requiring highly effective control over cylinder and ring-face scuffing and deposits. Oils designed for this service have been in existence since 1994 and may be used when API Service Category CD-II is recommended. These oils do not necessarily meet the requirements of API CF or CF-4 unless they pass the test requirements for these categories.

CG-4

Obsolete
CG-4
This category describes oils for use in high speed four-stroke-cycle diesel engines used in both heavy-duty on-highway(0.05% wt sulfur fuel) and off-highway (less than 0.5% wt sulfur fuel) applications. CG-4 oils provide effective control over high temperature piston deposits, wear, corrosion, foaming, oxidation stability, and soot accumulation. These oils are specially effective in engines designed to meet 1994 exhaust emission standards and may also be used in engines requiring API Service Categories CD, CE, and CF-4. Oils designed for this service have been in existence since 1994.

CH-4

Current
CG-4
This service oils are suitable for high speed, four-stroke diesel engines designed to meet 1998 exhaust emission standards and are specifically compounded for use with diesel fuels ranging in sulfur content up to 0.5% weight. CH-4 oils are superior in performance to those meeting API CF-4 and API CG-4 and can effectively lubricate engines calling for those API Service Categories.

CI-4

Current
CG-4
The CI-4 performance requirements describe oils for use in those high speed, four-stroke cycle diesel engines designed to meet 2004 exhaust emission standards, to be implemented October 2002. These oils are compounded for use in all applications with diesel fuels ranging in sulfur content up to 0.05% by weight. These oils are especially effective at sustaining engine durability where Exhaust Gas Recirculation (EGR) and other exhaust emission componentry may be used. Optimum protection is provided for control of corrosive wear tendencies, low and high temperature stability, soot handling properties, piston deposit control, valve train wear, oxidative thickening, foaming and viscosity loss due to shear. CI-4 oils are superior in performance to those meeting API CH-4, CG-4 and CF-4 and can effectively lubricate engines calling for those API Service Categories.

CI-4 Plus

Current
Severe-Duty Diesel Engine Service
Used in conjunction with API CI-4, the ” CI-4 PLUS” designation identifies oils formulated to provide a higher level of protection against soot-related viscosity increase and viscosity loss due to shear in diesel engines. Like Energy Conserving, CI-4 PLUS appears in the lower portion of the API Service Symbol “Donut.”

CJ-4

Current
Severe-Duty Diesel Engine Service
For high-speed four-stroke cycle diesel engines designed to meet 2010 model year on-highway and Tier 4 non-road exhaust emission standards as well as for previous model year diesel engines. These oils are formulated for use in all applications with diesel fuels ranging in sulfur content up to 500 ppm (0.05% by weight). However, the use of these oils with greater than 15 ppm (0.0015% by weight) sulfur fuel may impact exhaust aftertreatment system durability and/or drain interval. API CJ-4 oils exceed the performance criteria of API CI-4 with CI-4 PLUS, CI-4, CH-4, CG-4 and CF-4 and can effectively lubricate engines calling for those API Service Categories. When using CJ-4 oil with higher than 15 ppm sulfur fuel, consult the engine manufacturer for service interval.

CK-4

Current
Severe-Duty Diesel Engine Service
Oils for use in high-speed four-stroke cycle diesel engines designed to meet 2017 model year on-highway and Tier 4 non-road exhaust emission standards as well as for previous model year diesel engines. These oils are formulated for use in all applications with diesel fuels ranging in sulfur content up to 500 ppm (0.05% by weight). However, the use of these oils with greater than 15 ppm (0.0015% by weight) sulfur fuel may impact exhaust aftertreatment system durability and/or oil drain interval. These oils are especially effective at sustaining emission control system durability where particulate filters and other advanced aftertreatment systems are used. API CK-4 oils are designed to provide enhanced protection against oil oxidation, viscosity loss due to shear, and oil aeration as well as protection against catalyst poisoning, particulate filter blocking, engine wear, piston deposits, degradation of low- and high-temperature properties, and soot-related viscosity increase. API CK-4 oils exceed the performance criteria of API CJ-4, CI-4 with CI-4 PLUS, CI-4, and CH-4 and can effectively lubricate engines calling for those API Service Categories. When using CK-4 oil with higher than 15 ppm sulfur fuel, consult the engine manufacturer for service interval recommendations.

Technical Tables

SAE J300 Viscosity Grades for Engine Oils - December 1999

SAE Viscosity Grade Low Temperature °C Cranking Viscosity(1), Max (CCS) Low Temperature °C Pumping Viscosity(2), cP Max. with No Yield Stress Kinematic Viscosity (3)(cSt) at 100°C Min Kinematic Viscosity (3)(cSt) at 100°C Max High-Shear Viscosity (4),(cP) at 150°C and 106 s-1Min
OW 6200 @ -35 60000 @ -40 3.8 - -
5W 6600 @ -30 60000 @ -35 3.8 - -
10W 7000 @ -25 60000 @ -30 4.1 - -
15W 7000 @ -20 60000 @ -25 5.6 - -
20W 9500 @ -15 60000 @ -20 5.6 - -
25W 13000 @ -10 60000 @ -15 9.3 - -
20W - - 5.6 <9.3 2.6
30W - - 9.3 <12.5 2.9
40W - - 12.5 <16.3 2.9 (0W - 10W)
40W - - 12.5 <16.3 3.7 (15W - 25W)
50W - - 16.3 <21.9 3.7
60W - - 21.9 <26.1 3.7
All values are critical specifications as defined by ASTM D 3244.
cP=1 mPa.s 1 cSt=1 mm2s-1
Notes:
(1) ASTM D 5293.
(2) ASTM D 4684. Note that the presence of any yield stress detectable by this method constitutes a failure regardless of viscosity.
(3) ASTM D 445.
(4) ASTM D 4683, CEC L-36-A-90 (ASTM D 4741), or ASTM D 5481.

ISO Viscosity Grade Conversions

ISO Viscosity Grade Mid-point Kinematic Viscosity Kinematic Viscosity Limits cSt at 40° (104°F) ASTM, Saybolt Viscosity Number Saybolt Viscosity SUS 100°F (37.8°C)
Min. Max. Min. Max.
2 2.2 1.98 2.42 32 34.0 35.5
3 3.2 2.88 3.52 36 36.5 38.2
5 4.6 4.14 5.06 40 39.9 42.7
7 6.8 6.12 7.48 50 45.7 50.3
10 10 9.00 11.0 60 55.5 62.8
15 15 13.5 16.5 75 72 83
22 22 19.8 24.2 105 96 115
32 32 28.8 35.2 150 135 164
46 46 41.4 50.6 215 191 234
68 68 61.2 74.8 315 280 345
100 100 90.0 110 465 410 500
150 150 135 165 700 615 750
220 220 198 242 1000 900 1110
320 320 288 352 1500 1310 1600
460 460 414 506 2150 1880 2300
680 680 612 748 3150 2800 3400
1000 1000 900 1100 4650 4100 5000
1500 1500 1350 1650 7000 6100 7500

Viscosity Ranges for AGMS Lubricant Numbers

Rust and Oxidation Inhibited Gear Oils Viscosity Range Equivalent ISO Gradex Extreme Pressure Inhibited Gear Oils ISO Grade Gear Lubricants
AGMA Lubricant No. cSt (mm²/s) at 40°C   AGMA Lubricant No
1 41.4 to 50.6 46  
2 61.2 to 74.8 68 2 EP
3 90 to 110 100 3 EP
4 135 to 165 150 4 EP
5 198 to 242 220 5 EP
6 288 to 352 320 6 EP
7 414 to 506 460 7 EP
8 612 to 748 680 8 EP
8A 900 to 1100 1000 8A EP
Notes:
Viscosity ranges for AGMA Lubricant Numbers will henceforth be identical with those of the ASTM system. Oils compounded with 3% to 10% fatty or synthetic fatty oils.
SAE J306 Automotive Gear Viscosity Classification Axle and Manual Transmission Lubricant Viscosity Classification
    70W 75W 80W 85W 80 85 90 140 250
Viscosity at 100° max, mm²/s 4.1 4.1 7.0 11.0 7.0 11.0 13.5 24.0 41.0
max, mm²/s No requirement 11.0 13.5 24.0 41.0 No.Req
Viscosity of 150,000 mPa.s, max temp °C -55 0-40 0-26 0-12 No requirement
20 hr. KRL Shear (CRC L 45-T-93), KV100 after Shear, mm²/s 4.1 4.1 7.0 11.0 7.0 11.0 13.5 24.0 41.0

MIL-PRF-2105E Specification

75W 80W-90 85W-140W
Viscosity at 100° max, mm²/s 41 13.5 24.0
max, mm²/s - 24.0 41.0
Viscosity of 150,000 mPa.s, max temp °C -40.0 -26.0 -12.0
Channel Point, min, °C -45.0 -35.0 -20.0
Flash Point, min, °C 150 165 180
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram